Storm Highway by Dan Robinson
Storm chasing, photography and the open roadClick for an important message

Weather Library > Upward-moving lightning from TV towers, skyscrapers and other tall structures

Upward lightning to TV towers, skyscrapers and other tall structures

By DAN ROBINSON
Storm Chaser/Photographer
25 Years of Storm Chasing
Important Message
Dan's RSS/XML feed
Dan's Twitter feed
Dan's Google Plus page
Dan's YouTube Video Channel

Tall television broadcast towers and mega skyscrapers are lightning magnets - no other objects on earth are as frequently and predictably struck. Many of these structures experience over one hundred direct hits each year. This article will examine the unique type of lightning that is common with tall structures as well as how this phenomenon correlates with some common myths about lightning.

In This Article:
- Upward-moving or 'Ground-to-Cloud' lightning
- The stratiform precip region
- Lightning attraction myths
- 'Degree of influence' from metal objects
- Cloud-to-ground lightning to tall structures
- Lightning strikes twice
- Lightning leader phenomena
- Photographs
- Video Clips
- Links

HIGH RESOLUTION PHOTOS: High-res photos of upward lightning striking towers, including extreme close-ups of lightning, can be found at the Storm Highway Gallery.

Upward-moving or 'Ground-to-Cloud' lightning

While most lightning strikes to earth are the cloud-to-ground variety, the vast majority of lightning discharges to tall structures are of the distinctly different 'ground-to-cloud' or 'upward-moving' type (those terms are used interchangeably). Unlike a cloud-to-ground stroke's downward-moving (and downward-branched) stepped leader, a ground-to-cloud lightning discharge initiates as an upward-propagating, upward-branching leader from the tip of the structure skyward into the cloud. To illustrate the difference between cloud-to-ground and ground-to-cloud strokes, we'll examine frame-by-frame part of two video clips as well as simulated animations of both types of lightning strikes.

For Comparison: Cloud-to-ground lightning

Before we go into detail about upward lightning, let's take a look at the typical cloud-to-ground discharge. This first sequence of images are successive still frames from a typical cloud-to-ground lightning stroke, showing the downward-branching progression of the stepped leader:

Fig. 1: From video of a distant cloud-to-ground strike near Gothenburg, Nebraska: Frames 1 through 4 show the stepped leader descending, Frame 5 shows the intense first return stroke, Frame 6 shows the decaying first return stroke.

The following animation depicts the descent of the stepped leader and subsequent return strokes with a cloud-to-ground lightning stroke:

Cloud-to-Ground Lightning

Fig. 2: Animation depicting stepped leader, upward leaders, first return stroke, and secondary return strokes.

Ground-to-cloud lightning

Now that we've looked at cloud-to-ground lightning, let's look at ground-to-cloud lightning. The next two sequences show the upward-propagating nature of a ground-to-cloud lightning discharge to a television tower:


Fig. 3a: Frames from video of a 'Type A' upward-moving discharge from a television tower near St. Albans, West Virginia.


Fig. 3b: Frames from video of a 'Type B' upward-moving discharge from the same tower during a different storm.

Ground-to-cloud lightning: two variations


Fig. 4a: Examples of 'Type A' and 'Type B' upward-moving lightning.

Ground-to-cloud discharges have been observed in two distinct forms. The first variation, 'Type A', is less common but much more visually spectacular, and consists of a tree-like branch network literally 'sprouting' skyward off of the tip of the structure. As a 'Type A' discharge continues, the number of branches diminishes until only one or two main channels remain to carry secondary return strokes. The second 'Type B' is more common and consists of a single, branchless leader rocketing upward from the structure tip. Although 'Type B' ground-to-cloud strokes show no low-level branching, they commonly do eventually exhibit upward branching at some point near or above the cloud base. The following animation depicts the two types of upward-propagating 'ground-to-cloud' discharges, Type A and Type B, to a television tower.

Ground-to-Cloud Lightning Type A Ground-to-Cloud Lightning Type B
Fig. 4b: Animation depicting two forms of upward-moving or 'ground-to-cloud' discharges to a television tower. 'Type A' (left) and Type B (right).

Ground-to-cloud lightning is triggered by a structure

Upward lightning happens due to intense electric fields concentrated at the tip of a structure during an overhead in-cloud lightning discharge. This results in the unique characteristic of upward lightning that it would not occur in the absence of the structure initiating the discharge. In the absence of a tower or skyscraper, the overhead lightning flash in the clouds would be all that occurs. It is only by the tall stucture's presence that the ground-to-cloud component of the discharge happens at all. So, in a sense, all upward lightning occuring to a structure is partly a man-made phenomenon, one that wouldn't exist without the structure being there.

Ground-to-cloud lightning: natural and artificial triggers

A purely natural upward-moving ground-to-cloud lightning stroke is actually a rarity. It favors a unique terrain feature characterized by an isolated, small peak at very high elevations relative to its immediate surroundings. One location in the United States where ground-to-cloud lightning is known to occur naturally is at Pilot Peak, near Yellowstone National Park in Wyoming. Pilot Peak is a tall, sharp-pointed, pyramid-shaped peak rising high above its surroundings, and at least one photograph has been obtained of a ground-to-cloud strike to its summit (see links section below).

While ground-to-cloud lightning is indeed a natural phenomenon, it is man-made structures that have clearly brought this type of discharge out of its 'natural habitat'. Today, thanks to urban development, ground-to-cloud lightning strikes are very common occurances and can be observed anywhere a thunderstorm encounters a tall structure. Broadcast towers and buildings that rise to heights above 1,000 feet above ground (AGL) are especially prolific hotspots for upward-moving lightning, with multiple direct strikes common even during a single storm.

Some well-known skyscrapers that are frequently targets of direct ground-to-cloud lightning strikes include Chicago's Sears Tower and John Hancock Center (see photos below), Toronto's CN Tower, New York's Empire State Building and the former World Trade Center towers (see links section below). Numerous photographs exist of these buildings taking direct hits from the distinctive upward-moving lightning. Ground-to-cloud lightning can usually be observed in any major metropolitan area, where very tall television broadcast towers are commonplace.

Chicago triple lightning strike

Fig. 5: Tall skyscrapers are frequent targets of upward-moving lightning. ABOVE: Chicago's Sears (Willis) Tower, Trump Tower and John Hancock Center take direct strikes at the same time. In the image below, both the Sears and the John Hancock are hit simultaneously during a single discharge event (before the Trump Tower was built).

In general, the taller the structure, the more lightning strikes it will experience. A 2,000-foot TV tower will initiate more strikes than a 1,000-foot structure, for example.

Frequency of strikes to skyscrapers and towers

If you were to perform an internet search to find the number of times lightning strikes a specific structure in an average year (the Sears Tower or Empire State Building, for example), you'll find figures ranging from the hundreds to the thousands. Which numbers are right? Based on my observations and collected images of actual tower/skyscraper strikes, a structure in the midwestern and northeastern USA with a height over 1,000 feet AGL (above ground level) receives an average of between 2 and 8 strikes during each thunderstorm that passes directly over the structure (a few thunderstorms produce no strikes to the structures, while in rare instances some can produce a dozen or more).

Given the fact that places like downtown Chicago, downtown New York City, and the WVAH tower site at West Virginia receive roughly 10-15 thunderstorm events that pass directly over the structures annually, we can conclude that these structures receive an estimated 50 to 110 strikes per year, with anomalous years likely producing no more than 150.

Tall structures in locations such as central Florida (regions that see many more thunderstorm days per year than the midwest or northeast) are more likely to have storms pass directly overhead. Therefore it is plausible that any tall broadcast tower (over 1,200 feet AGL) in the Florida 'lightning alley' would see well over 150-200 strikes per year.

Multiple simultaneous strikes

If multiple tall objects are present, upward lightning frequently will initiate off of more than one at the same time. For example, in Chicago, it is common for upward flashes to strike the Sears Tower, the John Hancock building and the Trump tower simultaneously. Clusters of multiple TV towers are frequently hit at the same time. Photographs exist of more than 7 of Oklahoma City's towers getting hit simultaneously during a single discharge.

The stratiform precip region

Strikes to towers and skyscrapers are most prolific in the electrified stratiform precipitation region of a thunderstorm complex (MCS) or convective squall line (see Fig. 5a below). The stratiform precip region usually extends from 20 to 200 miles or more behind a line of thunderstorms, and is characterized by light to moderate rain with intermittent lightning activity. While tower strikes can and do occur in the primary heavy cores of a thunderstorm, it is within the stratiform regions where they are most numerous and dramatic. Due to the lighter precipitation rates, the cloud bases and attendant visibilities are much higher in a stratiform region, allowing for a much greater length of lightning channels to be visible.


Fig. 5a: Radar image showing a convective squall line and attendant trailing stratiform precipitation region.

Upward lightning strokes from towers and skyscrapers in the stratiform precip regions are usually triggered by an intracloud discharge above the structure, and typically begin several minutes after the main core of heavy rain and lightning in the squall line passes. Many cases there will be a lull in lightning activity after the passage of the main squall line, leading an observer to prematurely conclude that the storm is over. After this lull, which can be up to 10 to 15 minutes long, upward discharges will suddenly begin to occur and continue every 2 to 5 minutes until the electrified portion of the stratiform region has passed. In most cases, two to five upward discharges are typical with the common storm complex, but larger complexes with extensive stratiform regions can produce more than a dozen strokes, since the tower remains under the electrified region for a longer period of time.

Very large thunderstorm complexes (usually associated with severe weather outbreaks) with extensive and highly electrified stratiform regions may produce upward lightning off of towers and skyscrapers even after the precipitation stops falling. As a general rule, if an electrified cloud mass (where lightning is still present) attached to a storm complex is over a tall structure, the potential exists for upward-moving lightning strokes. This can continue for over an hour after the passage of a squall line. The longer that an electrified stratiform region remains over a tall structure, the more upward discharges will occur.

Lightning attraction myths

Towers and tall buildings are a rare exception to the rule that lightning generally cannot be drawn or attracted. Let's discuss that rule of non-attraction briefly.

Storm chasers and scientists can tell you, from their years of experience and observation, that lightning routinely defies its most prevalent myths. In reality, lightning doesn't always strike the tallest object, doesn't always strike the most conductive (metal) object and it is not attracted, influenced or drawn to small objects on the ground, metallic or non-metallic. Photos like this one give compelling evidence that lightning strikes wherever it pleases:


(Click for full-size photo)
Fig. 6: Lightning strikes the ground very close to a metal light pole near Pittsburgh, Pennsylvania.

A person standing in the grassy field where the above bolt hit the ground would see quickly that the tall metal light pole close by didn't help draw the lightning away. The bare dirt and grass certainly wasn't the tallest and most conductive path in the area for the lightning to follow. The 'degree of influence' of the light pole was not enough to affect this strike to ground, even though it was less than fifty feet away.

Next, let's talk about that 'degree of influence' concept.

'Degree of influence' from metal objects

It has been found that the 'degree of influence' of metal objects on lightning is proportional to the size of the object. Photographic and laboratory evidence suggests that a conductive object will only attract a lightning channel at a distance at or less than the object's longest vertically-oriented dimension. That is, a three-foot high umbrella will not attract or influence a lightning channel that strikes more than three feet away (see Figure 6 illustration below). A metal earring will only attract a lightning bolt that is less than one-half of an inch away! A house or building may attract a lightning bolt that comes down at or less than a distance equal to its height. In other words, for most objects on the ground, a lightning strike must already be occuring at extremely close range for any attraction effects to come into play. This makes any relevance to safety a moot point, as lightning striking within a few feet of a person standing outside is usually just as lethal as a direct hit.


Fig. 7: Small metal objects will not attract a lightning channel that is further away than a distance equal to the object's length. Lightning would have to strike within three feet of this umbrella before it could be 'attracted' to the umbrella.

A tall television broadcast tower or a mega-skyscraper introduces a huge leap in size, and the resultant 'degree of influence', from an umbrella, earring or house. Not only is their immense size incomparable to small metal objects on the ground, these structures significantly reduce the insulating air gap bewteen a thunderstorm cloud and ground - something a house, golf club or umbrella fails to do. Using the degree of influence concept, we can conclude that a broadcast tower that is 1,500 feet high is likely to draw a lightning strike that is occuring within a 1,500-foot radius of its antenna tip. Photographic evidence of lightning strokes to these structures have reinforced this principle.

Cloud-to-ground lightning: attraction to tall structures

While upward-moving ground-to-cloud strikes account for most discharges to tall structures, these structures do on occasion experience a direct strike from a cloud-to-ground lightning flash. In these cases, a stepped leader for a forming cloud-to-ground discharge must already be descending in the general vicinity of the tower before it can be drawn to the tip of the structure. Using the degree of influence concept, if a stepped leader happens to come down near a tower closer than a distance equal to the structure's height, it may make a last-second horizontal jump over to the tower. The first photo below illustrates a clear instance of this occuring to a tower in Oklahoma City, Oklahoma. The lightning's downward branching is the main feature identifying it as a cloud-to-ground strike as opposed to a ground-to-cloud discharge.


Fig. 8: A cloud-to-ground (CG) strike is drawn to a tall tower in Oklahoma City, Oklahoma.


Fig. 8b: Another example of a cloud-to-ground (CG) strike occuring to a tower in Oklahoma City, Oklahoma. Again, the downward branching is the primary identifying feature of a CG (cloud-to-ground) as opposed to an upward-moving flash.


Fig. 8c: A bizarre cloud-to-ground stroke to the KMOV tower in St. Louis in June 2011, in which return strokes connected to the structure in three different places. Some strokes hit the tip of the antenna, while two others connected to guy wires at a considerable distance down the side (click the photo to enlarge).

Tall structures: Lightning strikes twice

The old saying that lightning never strikes the same place twice is another myth that any veteran storm observer or researcher has seen nature defy. Lightning can strike any location more than once. In fact, given enough time, it is actually inevitable. It may take as little as less than ten minutes within a single thunderstorm, or longer than a million years - but lightning will eventually strike the same spot again and again. A strike to any location does nothing to change the electrical activity in the storm above, which will produce another strike as soon as it 'recharges'. The previously hit location is then just as fair game for the next discharge as any other spot.

Here to help me bust this myth are Mythbusters Adam Savage and Jamie Hyneman, showing my footage of the Sears Tower getting struck by lightning twice during a July 2006 storm in Chicago. You can view the video clip at the Discovery Channel web site.


VIDEO: Lightning strikes the same place 50 times!
A compilation of fifty direct lightning strikes to the WVAH tower near St. Albans, WV.

Fig. 9: 11 strikes in one storm: The images below show ten out of a total of eleven strikes I captured in a 20 minute time frame to the WKYT / WTVQ towers in Lexington, Kentucky during a storm on February 5, 2008 (click to watch the video clip):

Lexington, KY tower lightning

Tall television towers and large skyscrapers blow the 'lightning never strikes twice' myth out of the water. A television tower's antenna often experiences a direct strike as frequently as every thirty seconds during more intense thunderstorms, with a total of three to over a dozen strikes per every half-hour interval that a storm is overhead. A observer wishing to witness a predictable close lightning strike has to go no further than his local television tower during a storm. Towers or skyscrapers that reach or exceed the 1,000 foot mark are virtually guaranteed to take at least one direct hit during every thunderstorm that passes overhead.

Lightning leader phenomena


Fig. 11: Incomplete upward lightning leaders eminating from the tops of five broadcast towers in Oklahoma City, Oklahoma in response to a simultaneous large 'anvil crawler' discharge directly overhead.

CASE STUDY LINK: Oklahoma City lightning leader event with photo and video documentation.

Most upward lightning events to tall structures occur in conjunction with, and as a result of, an in-cloud lightning discharge above the structure tip. Video evidence shows that intracloud lightning discharges are often the precursors of, and the triggers for, leader (or 'streamer') initiation from the tops of towers and skyscrapers. The in-cloud discharge creates a very high, concentrated electric field at the tower tip that promotes leader formation. Video has also shown that in-cloud lightning flashes initiate leaders off of tall structures that either do or do not go on to connect to the in-cloud discharge event (see photo and video clip linked above). The leaders that do not connect to full discharge will extend only a short distance before terminating in mid-air. Some of these leaders can produce audible thunder that will end abruptly due to the channel being very short in length (watch video clip in linked case study above). The following images are video captures of short lightning leaders that did not go on to complete a full discharge to the cloud. Note that the leader length can vary from less than a few feet to over 200 feet before the electrical breakdown ceases and the channel ends:


Fig. 10: Upward-propagating leaders ('streamers') off of a television tower that did not connect to full discharge.

In the second image above, the leader channel produced audible thunder that lasted for less than 1/5 of a second, indicating the channel was very short in length. The first image shows a very small leader which did not produce any thunder audible to the observer.

Most leader initiation events, however, do result in a full ground-to-cloud lightning discharge, as the leader propagates all the way into the cloud and connects to the intracloud flash already in progress. Video cameras can sometimes capture one or two frames of leader propagation prior to the return stroke of an upward lightning flash:


Fig. 11: Upward-propagating leaders ('streamers') off of a television tower that ended up connecting to a full lightning discharge.

Lightning and tall structures: Photographs

HIGH RESOLUTION PHOTOS: High-res photos of upward lightning striking towers, including extreme close-ups of lightning, can be found at the Storm Highway Gallery.

The following thumbnail images can be clicked to access larger versions of each photo.

Chicago skyscraper lightning strikes

Upward lightning is common to Chicago's three tallest skyscrapers - the Sears (Willis) Tower, Trump Tower and John Hancock Center. I traveled to Chicago ten times over 8 years to capture images of these strikes.

17 skyscraper strikes in one night: On the evening of June 30, 2014, Chicago's three tallest buildings were struck by lightning 17 times - 10 strikes to the Sears (Willis) Tower, 8 to the Trump Tower, and 4 to the John Hancock Center. The infographic below shows all of these strikes (click to see a larger version):

(More photos and video from this storm can be found on the June 30, 2014 Chicago lightning page.)

The following are from video of several upward-moving discharges to the Sears and Hancock in July of 2006:

Lightning striking the Sears Tower and John Hancock Center Telephoto view of lightning hitting the Sears Tower Lightning strike to the Sears Tower and Hancock building Lightning strikes the Sears Tower Close-up of lightning striking the Sears Tower Lightning strikes the John Hancock Center Lightning striking the John Hancock building Daytime lightning striking the Sears Tower

Lightning strikes five times - two and three towers at once

In many cities, multiple broadcast tower sites are clustered together. In these cases, upward lightning discharges often occur simultaneously to more than one tower at a time.

Such is the case with the cluster of three towers near Clayton, North Carolina, which carry the antennas for several Raleigh-Durham area television and radio stations, including those for WRAL, WRAZ, WRDC, WQDR, WNCN and WLFL. All three towers rise to a height of just under 2,000 feet, making them prime targets for lightning strikes during any storm that happens to pass overhead. On April 10, 2004 Matt and I filmed a relatively small and weak thunderstorm passing over the site, which produced five direct hits to the towers during a ten-minute timespan. Three of the discharges produced strikes to either two or all three towers simultaneously. The center tower, home to WRAL's antenna, took a direct hit during each of the five discharge events. We employed two cameras for the shoot, with one zoomed in close on the antennas and another at wide-angle.

The WVAH tower: Lightning's favorite West Virgina target

The ridgetop at Coal Mountain, just west of St. Albans, West Virginia near the Kanawha/Putnam county line, is home to the transmitter sites of several Charleston and Huntington area television and radio stations. For many years, Coal Mountain was home to two of the state's tallest structures, the towers housing antennas for WCHS, WVAH and WFYV. After a February 2003 ice storm brought down the massive WVAH structure, a new tower was built to replace both it and the smaller WCHS structure nearby. After the WCHS tower was removed, the new 1,500-foot structure remains the only tall tower on Coal Mountain. The old WVAH and WCHS towers were guaranteed lightning targets during every thunderstorm that passed overhead, and the new tower continues the tradition. The new tower is routinely hit between 3 and 10 times during most storms that pass overhead.

I have been continuing an ongoing project to document upward lightning events to the WVAH/WCHS tower site on video and stills since 2005. I am not able to cover every storm that impacts the tower, however I have been able to document over 50 ground-to-cloud discharges at this site. During a few of these shoots, I have used zoom lenses at close range to get detailed images of lightning channels on the scale of inches.

(Video from this project is avialable at stormhighway.com/footage.)

WVAH tower lightning photo section

There are too many images to list on this page, so photos here are broken down by event. Click on each event to access the chase report for that day, which will include a full list of available images:

August 4, 2009 WVAH tower lightning
Eight upward strikes - Extreme up-close still camera views at 1300mm
June 3, 2008 WVAH tower lightning
Nine upward strikes - Up-close video and still camera views
July 4, 2006 WVAH tower lightning
Four upward strikes - 3 video camera views, two up-close zooms
April 10, 2009 WVAH tower lightning
Ten upward strikes - 1-mile distance video and still camera views
April 17, 2006 WVAH tower lightning
Three upward strikes - 2 up close video camera views
June 14, 2005 WVAH tower lightning
Three upward strikes - 2 video camera views - 1 close, 1 wide
July 27, 2005 WVAH tower lightning
One upward strike, one cloud-to-ground strike - 2 video camera views - 1 close, 1 wide
May 8, 2009 WVAH tower lightning
Five upward strikes - Up-close video and still camera views
April 22, 2005 WVAH tower lightning
One upward strike - 1 up-close video camera view

SIDEBAR 1: Report and analysis of June 14, 2005 upward lightning video
SIDEBAR 2: Report and analysis of July 4, 2006 upward lightning video

Oklahoma City: Tower lightning playground

Oklahoma City, Oklahoma is home to a large number of tall towers clustered together in the northern section of the city. Strong to severe thunderstorms common in this area (known as the heart of Tornado Alley) frequently pass over the Oklahoma City 'tower farm', with staggering displays of ground-to-cloud lightning strikes to the structures. The first two photos below show two double tower strikes within five minutes of one another during a potent storm on May 29, 2001. The rest of the images are from a storm on April 26, 2009, when ten upward strikes to the towers were documented. Notice that both Type A and Type B discharges are represented here. The last image below shows a downward cloud-to-ground discharge connecting to a tower.

Lightning and tall structures: Video Clips


Lightning strikes the same place 50 times!

A compilation of fifty direct lightning strikes to the WVAH tower near St. Albans, WV.


Extreme close-ups of tower lightning

Extreme close-ups of upward lightning to the WVAH TV tower in West Virginia.


17 strikes to Chicago skyscrapers - June 30, 2014

17 strikes to Chicago's three tallest buildings, including doube and triple strikes.


11 strikes to Lexington, KY towers - February 5, 2008

Eleven strikes to Lexington, Kentucky TV towers during a winter severe weather outbreak.


Upward lightning to towers compilation

A compilation of upward lightning strikes to all structures in several states across the USA.

Ground-to-Cloud Lightning Links

Tom Warner has been capturing both upward and downward lightning events with high-speed video cameras, with stunning results.

Carter E. Gowl shot a photo of a purely natural ground-to-cloud lightning strike (that is, absent from any man-made structure) to Pilot Peak in Wyoming.

Mike Hollingshead has some great stills of upward-moving lightning striking towers in Omaha, Nebraska.

Mike Theiss has some impressive video of upward-moving lightning striking towers in Wichita Falls, Texas.

25 Years of Storm Chasing
Important Message
Dan's RSS/XML feed
Dan's Twitter feed
Dan's Google Plus page
Dan's YouTube Video Channel

GO: Home | Storm Chasing | Photography | Extreme Weather Library | Stock Footage | Blog

Featured Weather Library Article:

Lightning myths
Take a look at these common lightning myths. You might be surprised!
More Library Articles

All content © Dan Robinson. All usage requires a paid license - please contact Dan for inquiries.

Web Site Design and Internet Marketing by CIS Internet